Roll No. [Total No. of Pages : 7

EC-1848

B. Tech. (First Semester)

EXAMINATION, 2020

ELECTRONICS ENGINEERING

Time: Three Hours

Maximum Marks: 100

Note: Attempt questions from both Sections as directed.

Section—A

(Short Answer Type Questions)

Note: Attempt any *ten* questions. Each question carries 4 marks. $10 \times 4 = 40$

- 1. What is meant by exceptor and donor impurities?
- 2. Describe the static and dynamic resistance of diode.

- Draw the V-I characteristics of diode and explain it.
- 4. Determine the level of V_o for each network of given figure :

- 5. Explain the working of full wave bridge rectifier.
- 6. What is the significance of Q point in transistor? Explain with neat diagram.

7. Determine the d.c. bias voltage V_{CE} and current I_{C} for the voltage divider configuration of given Fig. :

- 8. Find out the expression for Ripple factor.
- 9. (i) Convert the decimal number 53.62 into an equivalent binary number.
 - (ii) Convert (444.456)₁₀ to an octal number.
- Explain voltage follower or unit gain configuration of Op-Amp.
- 11. Explain the concept of virtual ground in Op-Amp. circuits.

13. Determine the following for the network of given Fig. :

(a) V_{GS}

(b) I_D

(c) V_{DS}

(d) V_D

(e) V_G

 $(f) V_S$

13. With the help of neat diagram, explain pinchoff condition in FET.

14. Prove that:

(i)
$$A + BC = (A + B) (A + C)$$

(ii)
$$A \lor (A+B) = A$$

Section—B (Long Answer Type Questions)

Note : Attempt any *three* questions. Each question carries 20 marks. $3\times20=60$

- 1. (a) What do you understand by clipper and clamper circuits? Explain with suitable diagram.
 - (b) Explain the working of P-N junction diode.
- 2. (a) For a voltage feedback network shown in Fig. given below, determine:

- (b) With the help of a neat diagram, explain potential divider biasing. Also find out the expression for base current I_b and output voltage V_{CE} .
- 3. (a) With the help of a neat diagram, explain construction of D-MOSFET. Also explain its working.
 - (b) With the help of suitable diagram, explain the working of N-channel FET.
- 4. (a) With the help of block diagram, explain digital multimeter (DMM).
 - (b) With the help of a block diagram, explain the working of CRO.
- 5. (a) What do you understand by Op-Amp. ?

 Explain, how Op-Amp. performs addition operation.
 - (b) Draw the circuit diagram of an Op-Amp. integrator and show that output voltage is an integration of input voltage.

- 6. Write short notes on the following:
 - (a) Universal gates
 - (b) De Morgan's theorems
 - (c) Minimization techniques
 - (d) Ramp type DVM